
University of Notre Dame
2021-2022

Notre Dame Rocketry Team
Launch Vehicle Identification System (LVIS)

EE Senior Design 2022
Final Report

Len Pieroni
Stephen Bolster

Table of Contents

Table of Contents 2

Introduction 3

Detailed System Requirements 6

Detailed Project Description 7
System Theory of Operation 7
System Block Diagram 9
Detailed Design/Operation of Power Supply 9
Detailed Design/Operation of Wireless Transmission System 10

System Integration Testing 11

Users Manual 12
Ground Station Setup 12
Transmitter Setup 13
Testing if the System is Working 13
Troubleshooting 14

To-Market Design Changes 14

Conclusions 15

Appendices 18
Bill of Materials 18
Hardware Schematic 20
Board Layout 22
Software 23
Data Sheets 36

2

Introduction

Every year the Notre Dame Rocketry Team (NDRT) competes in the NASA Student

Launch Initiative. It is open to high school and college teams who design, build, and launch a

launch vehicle to meet NASA’s mission requirements. Over the course of the year, each team

participates in three design reviews: Preliminary Design Review, Critical Design Review, and

Launch Readiness Review. The purpose of these reviews is to document the design process

and receive feedback from NASA engineers on safety, mission performance, etc. The team

must demonstrate the safety of the launch vehicle with at least one successful vehicle

demonstration flight and pass the Launch Readiness Review to be eligible for the final

competition in Huntsville, AL. Teams are scored based on four written reports, three design

reviews, competition launch performance, safety, and other factors.

The mission description for this year is found in the 2022 NASA Student Launch

Handbook and is quoted below:

“Teams shall design a payload capable of autonomously locating the launch

vehicle upon landing by identifying the launch vehicle’s grid position on an aerial

image of the launch site without the use of a global positioning system (GPS).

The method(s)/design(s) utilized to complete the payload mission will be at the

teams’ discretion and will be permitted so long as the designs are deemed safe,

obey FAA and legal requirements, and adhere to the intent of the challenge.”

NDRT considered several different methods to complete this mission (documented in the PDR

report linked on this project’s website), and eventually settled on a non-deploying inertial

navigation system. Nicknamed LVIS, or Launch Vehicle Identification System, the payload

carried a triple-redundant system of Raspberry Pi’s, high-G inertial measurement units (IMUs),

3

and low-G IMUs. The Raspberry Pi’s ran a program that continuously monitored the IMUs while

waiting for launch. After launch detection, the initial orientation was recorded and the IMU data

was continuously written to a data file until landing detection. Once landed, an algorithm was

run on the saved data to integrate the acceleration and rotation from launch to landing and

calculate a total displacement. This displacement was converted into a grid number

corresponding to its position on the launch field. The grid number was then transmitted by the

payload to the ground station. Accuracy of the transmitted grid number was verified by GPS.

4

In close collaboration with the NDRT Payload squad, this EE Senior Design group built

the power supply and wireless transmission system for both LVIS and the ground station. These

two systems were integrated into a single custom printed circuit board in order to minimize their

total mass and volume. Required functionality included distributing power from the battery to

each of the payload’s active components, receiving messages from the inertial navigation

system’s master Pi, transmitting the messages from the launch vehicle to the ground station,

and displaying them at the ground station. The system also needed to comply with relevant

constraints on frequency and transmission power set by NASA and the FCC, as well as meet

range and reliability requirements derived from the expected launch conditions. Robustness and

reliability are the highest priorities for this project due to the extreme conditions in which it

operates and its functionality being essential for mission success.

5

Detailed System Requirements

NASA Requirements

● “2.23.8 Transmissions from onboard transmitters, which are active at any point

prior to landing, will not exceed 250 mW of power (per transmitter).

■ Operates at 50mW, can increase but not beyond 150mW

● “2.23.9 Transmitters will not create excessive interference. Teams will utilize

unique frequencies, handshake/passcode systems, or other means to mitigate

interference caused to or received from other teams”

■ Uses LoRa channel 17 (905.7 MHz) to mitigate interference

● “2.7 The launch vehicle and payload will be capable of remaining in

launch-ready configuration on the pad for a minimum of 2 hours without losing

the functionality of any critical on-board components, although the capability to

withstand longer delays is highly encouraged”

Hardware Requirements

● Total payload mass does not exceed 90 oz or 2.551 kg.

● Power delivery system delivers sufficient power to each peripheral Raspberry Pi,

microcontroller, and transceiver.

● Embedded intelligence interfaces with INS, ground station, and transceiver. It

passes a message received on one interface through to the other.

● Operates in outdoor temperatures between 20°F and 100°F.

6

● Withstands acceleration on the order of 40 Gs.

● Transmits within ISM Frequency Bands.

■ Operates at 905.7MHz (LoRa channel 17), inside 915MHz band

● Receives transmission at distances of up to 2500 feet.

■ Requires Line of Sight between payload and ground station

Detailed Project Description

System Theory of Operation

The system consists of two identical boards. One is located inside the launch vehicle

and powered by a 7.4V battery. The other board is placed at the ground station and powered via

USB by a connected laptop. A serial interface enables data to be passed to the transmitter unit

inside the launch vehicle and a USB-to-serial bridge enables data to be passed between the

ground station’s receiver unit and the connected laptop. When a packet is passed to the

transmitter, it waits for the end of the packet (denoted by a ‘\r’ or ‘\n’ character for compatibility)

and then transmits the packet to the ground station using channel 17 (905.7 MHz) of the

915MHz LoRa frequency band. The RFM95W transceiver integrated circuit used on both boards

is configured for variable packet lengths so any packet small enough to fit in the 64-byte

transmit and receive buffers can be sent.

The transmitter unit, located in the launch vehicle, also provides power for the payload’s

sensor suite. It regulates the 7.4V of the connected battery down to 5V and can provide up to

2A total on the three output connectors. Two connectors are two-pin, providing only 5V and

7

ground connections, and the third is a four-pin connector to provide 5V, ground, and serial Tx

and Rx connections. The third connector is the one that carries data between the unit and the

payload’s sensors. These three connectors and the voltage regulation electronics are also

present on the ground station’s board. On the receiver, the voltage regulator is disconnected

from the 5V plane with a jumper clip and the power connectors are unused.

The wireless communication subsystem consists of a 3.3V LDO regulator, a PIC32MX

microcontroller, an RFM95W LoRa transceiver module, and a CP2104 USB-to-serial bridge as

well as a Micro USB connector. The microcontroller communicates with the transceiver over SPI

using the module’s single read/write protocol, in which each register must be addressed

individually and separated by a HIGH signal on the Chip Select line. The interface between the

microcontroller and the CP2104 uses UART serial and the CP2104 communicates with a laptop

with a Micro USB cable and the USB protocol.

8

System Block Diagram

Detailed Design/Operation of Power Supply

The ground station does not use the unit’s power supply subsystem. On the launch

vehicle’s unit, the power supply provides 5V power to the INS from a 7.4V battery. A buck

converter rated for 2A output lowers the 7.4V to 5V by switching the supply voltage on and off

rapidly, providing higher efficiency than a linear LDO regulator. An external LC filter smooths the

9

output of the regulator and mitigates noise. The 5V output goes through a jumper clip to the

board’s 5V plane, connecting to the 5V pin on each of the three power connectors as well as the

3.3V regulator that powers the wireless transmission system. The alternate position of the

jumper clip disconnects the buck converter’s output from the 5V plane and instead connects the

5V pin on the Micro USB connector to the plane, preventing damage caused by connecting the

board to both a battery and a laptop simultaneously.

The primary Pi that will be communicating with the wireless transmission system

connects to the four-pin connector on the board and the other two Pis use the two-pin

connectors. All sensors draw power from their associated Pis.

Detailed Design/Operation of Wireless Transmission System

Both the ground station and the launch vehicle units use the wireless transmission

subsystem. Inside the launch vehicle, one Raspberry Pi is designated as the primary computer,

the one which communicates with the wireless transmission system via UART. This Pi creates

packets to send to the ground station. These packets must be no more than 63 characters long

and must be terminated with a ‘\r’ or ‘\n’ character. The packet is then sent over UART to the

10

wireless transmitter, where the microcontroller counts the number of bytes in the packet and

sends the radio module the packet length and the packet before putting the module into transmit

mode. The ground station receives the packet and the onboard microcontroller reads it from the

transceiver chip over SPI. Once the packet is read, the microcontroller writes it to the connected

laptop using UART and the USB-to-serial bridge.

System Integration Testing

Power Supply Test: Connect the battery to the input terminal and check the output

voltages to the Raspberry Pi power connectors and the voltage pins of the microcontroller /

transceiver module.

With the battery plugged in, 5V was measured on each of the Raspberry Pi connectors

and 3.3V was measured on the microcontroller / transceiver supply pins. Measurement of the

expected voltages indicated that the power supply was operating nominally.

Transmission Range Test: Separate the transmitter and receiver by at least 2500 ft

(~0.5 mi) then begin transmission and observe packet reception rate.

This test was conducted by placing the transmitter and receiver at opposite ends of

South Quad on campus. Line-of-sight transmission success rate was 100% at maximum range

with the transmitter inside the launch vehicle body tube.

LVIS Integration Test: Demonstrate full payload functionality by connecting the wireless

transmission system and inertial navigation system and verifying that messages sent from the

master Pi are received by the ground station.

11

This test was successfully completed prior to each launch during the rehearsal and at

the launch field. Observation of the LVIS boot-up message at the ground station was required

before the payload could be inserted into the launch vehicle.

Users Manual

Ground Station Setup

1. The ground station requires installation of PuTTY, a free terminal client for Windows.

2. Connect the receiver board to a PC via a micro-usb cable and ensure that the green

power LED turns on.

12

3. Open Device Manager and verify that “CP210x USB to UART bridge” appears under the

“Ports (COM & LPT)” dropdown.

4. Note the COM port number of this device.

5. Open PuTTY and select “Serial” connection type in the main window.

6. In the Serial line box, type in the “COMx” port noted during installation.

7. Type “57600” in the Speed box.

8. Click “Open” at the bottom of the window and a blank terminal window should appear.

Transmitter Setup

1. Fasten the battery connector to the transmission board by tightening an M2 screw

through each of the ring connectors. Make sure to verify the correct polarity.

2. Pass four M2 screws through the mounting holes of the transmission board and the

battery mounting block, and secure them with nuts on the underside of the top payload

bulkhead.

3. Connect the three Raspberry Pi cables to their respective molex connectors on the

transmission board.

4. Place the power supply jumper pin in the position labeled “BATT”.

Testing if the System is Working

Once powered on, the transmitter should immediately send the message “Starting” to the

ground station. About two minutes later, the message “LVIS Initializing…” should be received by

the ground station followed by a sequence of startup messages. These messages indicate

LVIS’s current state. While it is waiting for launch, LVIS will periodically (~10s intervals) transmit

“LVIS On” to indicate that it is still in the active state. If all of these transmissions are received,

then LVIS is ready for liftoff.

13

Troubleshooting

“Starting” message not received at power on.

Check that the transmitter and receiver are both plugged in and the green power LED is

on. If the transmitter is plugged in but not powered on, ensure that the jumper pin is in the

“BATT” position. If the jumper pin is correct and the board still doesn’t power on, check that the

battery voltage is not below 6.4V. If the battery voltage is near or below this level, recharge or

replace the battery immediately.

“Starting” message received but no subsequent messages

Reboot the transmitter. Ensure that each string sent to the transmitter over UART does

not exceed 63 characters and is terminated by a ‘\n’ character. Do not try to transmit messages

more frequently than every 100ms to allow time for each transmission to send without

overflowing the buffer. Ensure all characters are encoded in UTF8 format.

Changing the operating frequency

Open “main.c” in MPLAB X. On line 6, change FREQUENCY to the desired frequency.

On line 301, make tx = 1. Connect power and the PicKit to the transmitter board and upload the

script. Change line 301 to “tx = 0”. Connect power and the PicKit to the receiver board and

upload the script. The system should now operate at the frequency it was changed to. Verify

that the “Starting” message is still received at power on.

To-Market Design Changes

● Implement an acknowledgement signal sent by the receiver unit to the transmitter so as

to improve the reliability of data transmission

14

● Implement a method, such as a checksum, to verify the data received by the ground

station to ensure that a byte is not corrupted or lost

● Add a way to transmit commands from the ground station to the payload, such as a reset

● Add a DIP switch to allow the board to be used as a transmitter or a receiver without

reprogramming

Conclusions

The team designed and built a single board that incorporates both a 5V power supply

and a wireless transceiver and that can function as both the payload transmitter and the ground

station receiver. Both subsystems perform very well but have room for improvement. For

example, the wireless transceiver could be programmed to enable communication from the

ground station to the launch vehicle, which would allow the ground station attendant to reset the

system remotely and would enable the use of an acknowledgement signal to notify the launch

vehicle’s transmitter that its message was received properly.

While the launch vehicle sat on the launch rail in Huntsville, the ground station reported

that a launch event had been detected before takeoff actually occurred. The launch of a nearby

rocket or a strong gust of wind most likely shook the rocket and caused LVIS to detect a launch

event prematurely, which would have caused it to fail because LVIS would have measured a

launch and a landing before the rocket’s flight began instead of measuring the accurate

trajectory of the vehicle. Fortunately, the ground station attendant noticed that a launch event

detection was incorrectly reported and was able to notify the team’s launch supervisors. They

were able to power down and restart LVIS, fixing the error and restoring the payload to full

functionality.

During the Huntsville flight, the system worked as intended. It reported the correct launch

event after the previously discussed reset and LVIS remained powered for the duration of the

15

flight. Unfortunately, the wireless transmission subsystem failed after landing. The launch

vehicle landed on the opposite side of a small ridge from the ground station so the line of sight

required for successful communication was blocked by dirt. LVIS measured the landing site

correctly and the transmitter sent the coordinates, but the ground station was unable to receive

the data.

16

17

Appendices

Bill of Materials

1/19/2022 Order

Part Number Name Description
Unit
Price Quantity

Total
Price

576-2280-ND
MIC3775-3.3YMM

3.3V LDO
Regulator $2.07 4 $8.28

296-49468-1-ND TPS613222ADBVT
5V Boost
Regulator $1.16 8 $9.28

PIC32MX110F016B-I/ML-N
D

PIC32MX110F016B-I/M
L

PIC32
Microcontroller $2.67 4 $10.68

RFM95W-915S2-ND RFM95W-915S2 RF Transceiver $13.44 4 $53.76

343-CONSMA020.062-G-
ND

343-CONSMA020.062-
G

SMA Antenna
Connector $2.96 4 $11.84

2151-RST-W1B6-10808-22
M-FY-001-ND

2151-RST-W1B6-10808
-22M-FY-001 Antenna $4.64 2 $9.28

WM1397CT-ND 476540001
Micro USB
Connector $0.87 4 $3.48

2/2/2022 Order

Part Number Name Description
Unit
Price Quantity

Total
Price

AP1509-50SGDICT-ND AP1509-50SG-13
5V Buck
Regulator 1.45 4 5.8

541-1405-1-ND
IFSC1515AHER4R7M0
1 Inductor 0.61 5 3.05

495-5997-ND B41858C4477M000
Capacitor (Buck
output) 0.84 5 4.2

1189-3726-ND
25ZL1000MEFC12.5X2
0

Capacitor (Buck
input) 0.83 5 4.15

PD3S230LQ-7DICT-ND PD3S230LQ-7 Rectifier Diode 0.64 5 3.2

F3157CT-ND SP0504BAHTG ESD Diode 0.95 5 4.75

S9002-ND SSC02SYAN
Jumper
connector 0.21 6 1.26

18

23-0190700005-ND 190700005 Ring terminals 0.23 6 1.38

PCB Order (PCBWay) PCB 5 5 46.9

PCB Order (Osh Park) PCB 3 44.65

Total: 225.94

19

Hardware Schematic

20

21

Board Layout

22

Software

regList.c

// registers

#define REG_FIFO 0x00

#define REG_OP_MODE 0x01

#define REG_FRF_MSB 0x06

#define REG_FRF_MID 0x07

#define REG_FRF_LSB 0x08

#define REG_PA_CONFIG 0x09

#define REG_OCP 0x0b

#define REG_LNA 0x0c

#define REG_FIFO_ADDR_PTR 0x0d

#define REG_FIFO_TX_BASE_ADDR 0x0e

#define REG_FIFO_RX_BASE_ADDR 0x0f

#define REG_FIFO_RX_CURRENT_ADDR 0x10

#define REG_IRQ_FLAGS 0x12

#define REG_RX_NB_BYTES 0x13

#define REG_PKT_SNR_VALUE 0x19

#define REG_PKT_RSSI_VALUE 0x1a

#define REG_RSSI_VALUE 0x1b

#define REG_MODEM_CONFIG_1 0x1d

#define REG_MODEM_CONFIG_2 0x1e

#define REG_RX_TIMEOUT 0x1f

#define REG_PREAMBLE_MSB 0x20

#define REG_PREAMBLE_LSB 0x21

#define REG_PAYLOAD_LENGTH 0x22

#define REG_MODEM_CONFIG_3 0x26

#define REG_FREQ_ERROR_MSB 0x28

#define REG_FREQ_ERROR_MID 0x29

#define REG_FREQ_ERROR_LSB 0x2a

#define REG_RSSI_WIDEBAND 0x2c

#define REG_DETECTION_OPTIMIZE 0x31

#define REG_INVERTIQ 0x33

#define REG_DETECTION_THRESHOLD 0x37

#define REG_SYNC_WORD 0x39

#define REG_INVERTIQ2 0x3b

#define REG_DIO_MAPPING_1 0x40

#define REG_VERSION 0x42

#define REG_PA_DAC 0x4d

// modes

23

#define MODE_LONG_RANGE 0x80

#define MODE_SHARED_REG 0x40

#define MODE_SLEEP 0x00

#define MODE_STDBY 0x01

#define MODE_TX 0x03

#define MODE_RX_CONTINUOUS 0x05

#define MODE_RX_SINGLE 0x06

// masks

#define MASK_RX_TIMEOUT 0x80

#define MASK_RX_DONE 0x40

#define MASK_PAYLOAD_CRC_ERROR 0x20

#define MASK_VALID_HEADER 0x10

#define MASK_TX_DONE 0x08

#define MASK_CAD_DONE 0x04

#define MASK_FHSS_CHANGE_CHANNEL 0x02

#define MASK_CAD_DETECTED 0x01

24

main.c

#include <xc.h>

#include <stdio.h>

#include "SDlib16_delay.h"

#include "regList.c"

#define FREQUENCY 905700000 // Channel 17

// DEVCFG3

#pragma config USERID = 0xFFFF // Enter Hexadecimal value (Enter

Hexadecimal value)

#pragma config PMDL1WAY = ON // Peripheral Module Disable

Configuration (Allow only one reconfiguration)

#pragma config IOL1WAY = ON // Peripheral Pin Select

Configuration (Allow only one reconfiguration)

// DEVCFG2

#pragma config FPLLIDIV = DIV_2 // PLL Input Divider (2x Divider)

#pragma config FPLLMUL = MUL_20 // PLL Multiplier (20x Multiplier)

#pragma config FPLLODIV = DIV_2 // System PLL Output Clock Divider

(PLL Divide by 2)

// DEVCFG1

#pragma config FNOSC = FRCPLL // Oscillator Selection Bits (Fast

RC Osc with PLL)

#pragma config FSOSCEN = OFF // Secondary Oscillator Enable

(Disabled)

#pragma config IESO = ON // Internal/External Switch Over

(Enabled)

#pragma config POSCMOD = OFF // Primary Oscillator Configuration

(Primary osc disabled)

#pragma config OSCIOFNC = OFF // CLKO Output Signal Active on the

OSCO Pin (Disabled)

#pragma config FPBDIV = DIV_4 // Peripheral Clock Divisor (Pb_Clk

is Sys_Clk/4)

#pragma config FCKSM = CSECME // Clock Switching and Monitor

Selection (Clock Switch Enable, FSCM Enabled)

#pragma config WDTPS = PS4096 // Watchdog Timer Postscaler

(1:4096)

#pragma config WINDIS = OFF // Watchdog Timer Window Enable

(Watchdog Timer is in Non-Window Mode)

#pragma config FWDTEN = OFF // Watchdog Timer Enable (WDT

25

Disabled (SWDTEN Bit Controls))

#pragma config FWDTWINSZ = WINSZ_25 // Watchdog Timer Window Size

(Window Size is 25%)

// DEVCFG0

#pragma config JTAGEN = OFF // JTAG Enable (JTAG Disabled)

#pragma config ICESEL = ICS_PGx1 // ICE/ICD Comm Channel Select

(Communicate on PGEC1/PGED1)

#pragma config PWP = OFF // Program Flash Write Protect

(Disable)

#pragma config BWP = OFF // Boot Flash Write Protect bit

(Protection Disabled)

#pragma config CP = OFF // Code Protect (Protection

Disabled)

char uart1_init(unsigned int baud) {

U1RXR = 0b0001; // RB6 is U1RX

RPB7R = 0b0001; // RB7 is U1TX

U1MODE = 0x00000088;

U1BRG = 10000000ul / (4*baud) - 1;

U1STAbits.UTXEN = 1;

U1STAbits.URXEN = 1;

U1MODEbits.ON = 1;

return 0;

}

char uart2_init(unsigned int baud) {

U2RXR = 0b0100; // RB8 is U2RX

RPB9R = 0b0010; // RB9 is U2TX

U2MODE = 0x00000088;

U2BRG = 10000000ul / (4*baud) - 1;

U2STAbits.UTXEN = 1;

U2STAbits.URXEN = 1;

U2MODEbits.ON = 1;

return 0;

}

char uart1_write(char tx) {

while(U1STAbits.UTXBF); // Block while transmit buffer is full

U1TXREG = tx;

return tx;

26

}

char uart2_write(char tx) {

while(U2STAbits.UTXBF); // Block while transmit buffer is full

U2TXREG = tx;

return tx;

}

char write_uart(char moduleNum, char tx) {

switch(moduleNum) {

case 1:

return uart1_write(tx);

break;

case 2:

return uart2_write(tx);

break;

default:

return -8; // Return -8 if moduleNum is not valid

}

}

char uart1_read() {

if(U1STAbits.URXDA)

return U1RXREG;

return -7; // Return -7 if receive buffer is empty

}

char uart2_read() {

if(U2STAbits.URXDA)

return U2RXREG;

return -7; // Return -7 if receive buffer is empty

}

char read_uart(char moduleNum) {

switch (moduleNum){

case 1:

return uart1_read();

break;

case 2:

return uart2_read();

break;

default:

return -8; //Return -8 if moduleNum is not valid

27

}

}

char uart1_wait_for_read() {

while(!U1STAbits.URXDA);

return U1RXREG;

}

char uart2_wait_for_read() {

while(!U2STAbits.URXDA);

return U2RXREG;

}

char wait_for_read_uart(char moduleNum) {

switch(moduleNum) {

case 1:

return uart1_wait_for_read();

break;

case 2:

return uart2_wait_for_read();

break;

default:

return -8;

}

}

char spi_init(unsigned int sck) {

// SPI1CON = 0x100120AD; // 8-bit words, not Framed mode, with SS

SPI1CONbits.ON = 0;

SPI1CONbits.CKE = 1;

SPI1CONbits.CKP = 0;

SPI1CONbits.MSTEN = 1;

SPI1CONbits.ENHBUF = 0;

SPI1BRG = 10000000ul / (2*sck) - 1;

RPB13R = 0x3; // RB13 is SDO1

SDI1R = 0x3; // RB11 is SDI1

// RB15 is SS1 (active low)

SPI1CONbits.ON = 1;

return 0;

}

char read_spi() {

while(SPI1STATbits.SPIRBE); // Block while waiting for receive

28

delay_us(5);

return SPI1BUF;

return -7; // If receive buffer is empty, return -7 (illegal receive

value)

}

char write_spi(char tx) {

while(SPI1STATbits.SPITBF) { // While transmit buffer is full, wait

until space opens

delay_us(1);

}

delay_us(5);

return SPI1BUF = tx;

}

void write_reg_spi(char addr, char val) {

LATBbits.LATB15 = 0;

delay_us(5);

write_spi(0x80 | addr);

read_spi();

write_spi(val);

read_spi();

delay_us(5);

LATBbits.LATB15 = 1;

delay_us(20);

}

char read_reg_spi(char addr) {

LATBbits.LATB15 = 0;

delay_us(5);

write_spi(addr);

read_spi();

write_spi(0x00);

char val = read_spi();

delay_us(5);

LATBbits.LATB15 = 1;

delay_us(20);

return val;

}

char write_reg_burst(char addr, char* vals, char len) {

char i;

LATBbits.LATB15 = 0;

29

delay_us(5);

write_spi(0x80 | addr);

for(i = 0; i < len; i++) {

delay_us(15);

write_spi(vals[i]);

read_spi();

}

LATBbits.LATB15 = 1;

return len;

}

char* read_reg_burst(char addr, char* vals, char len) {

LATBbits.LATB15 = 0;

delay_us(5);

write_spi(addr);

read_spi();

for(char i = 0; i < len; i++) {

write_spi(0x00);

vals[i] = read_spi();

}

delay_us(5);

LATBbits.LATB15 = 1;

}

int radio_config() {

uint64_t frf = ((uint64_t)FREQUENCY << 19) / 32000000;

uint8_t frf_msb = (uint8_t)(frf >> 16);

uint8_t frf_mid = (uint8_t)(frf >> 8);

uint8_t frf_lsb = (uint8_t)(frf >> 0);

read_reg_spi(REG_VERSION);

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_SLEEP)); //Set

RegOpMode to sleep

delay_us(50);

read_reg_spi(REG_OP_MODE);

delay_us(50);

// write_reg_spi(REG_FRF_MSB, 0xE4);

// write_reg_spi(REG_FRF_MID, 0xC0);

// write_reg_spi(REG_FRF_LSB, 0x00);

write_reg_spi(REG_FRF_MSB, frf_msb);

write_reg_spi(REG_FRF_MID, frf_mid);

30

write_reg_spi(REG_FRF_LSB, frf_lsb);

write_reg_spi(REG_FIFO_TX_BASE_ADDR, 0x00);

write_reg_spi(REG_FIFO_RX_BASE_ADDR, 0x00);

short lnaGain = read_reg_spi(REG_LNA) & 0xE0;

write_reg_spi(REG_LNA, (lnaGain | 0x03));

write_reg_spi(REG_MODEM_CONFIG_3, 0x04);

write_reg_spi(REG_PA_DAC, 0x84);

write_reg_spi(REG_OCP, 0x2B);

write_reg_spi(REG_PA_CONFIG, 0x8F);

write_reg_spi(REG_RX_TIMEOUT, 0xFF);

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_STDBY));

delay_ms(5);

return 0;

}

void rf_block_while_tx() {

while(!(read_reg_spi(REG_IRQ_FLAGS)) & MASK_TX_DONE)

delay_us(100);

write_reg_spi(REG_IRQ_FLAGS, MASK_TX_DONE);

return;

}

char begin_packet() {

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_STDBY));

write_reg_spi(REG_MODEM_CONFIG_1, 0x72);

write_reg_spi(REG_FIFO_ADDR_PTR, 0x00);

write_reg_spi(REG_PAYLOAD_LENGTH, 0x00);

return 0;

}

void add_data_to_packet(char data) {

write_reg_spi(REG_FIFO, data);

// *ptrPayloadLen++; // Pointer is used so the payload length is

automatically incremented by the function

// return *ptrPayloadLen;

}

char end_packet(char payloadLen) {

write_reg_spi(REG_PAYLOAD_LENGTH, payloadLen);

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_TX));

return payloadLen;

}

31

char send_packet(char* payload, char payloadLen) {

int i = 0;

begin_packet();

// write_reg_burst(REG_FIFO, payload, payloadLen);

for(i = 0; i < payloadLen; i++) {

add_data_to_packet(payload[i]);

}

return end_packet(payloadLen);

}

char rf_block_until_rx() {

while(!(read_reg_spi(REG_IRQ_FLAGS) & (MASK_RX_TIMEOUT |

MASK_RX_DONE)))

delay_us(50);

char irqFlags = (read_reg_spi(REG_IRQ_FLAGS));

write_reg_spi(REG_IRQ_FLAGS, (MASK_RX_TIMEOUT | MASK_RX_DONE |

MASK_PAYLOAD_CRC_ERROR | MASK_VALID_HEADER));

return irqFlags;

}

int main() {

unsigned char payloadLen = 0;

unsigned char payload[64];

// RUN_TIME DEBUGGING VARIABLES

char tx = 1; // If tx == 1, transmitter mode enabled

char uart_debug = 2;

delay_ms(500);

ANSELA = 0;

ANSELB = 0;

TRISBbits.TRISB15 = 0;

LATBbits.LATB15 = 1;

spi_init(100000);

uart1_init(57600);

uart2_init(57600);

unsigned char row = '0';

unsigned char col = 'A';

unsigned char i = 0;

radio_config();

delay_ms(250);

32

uart2_write('B');

uart2_write('o');

uart2_write('o');

uart2_write('t');

uart2_write('i');

uart2_write('n');

uart2_write('g');

uart2_write('\r');

uart2_write('\n');

delay_ms(25);

if(tx) {

payload[0] = 'S';

payload[1] = 't';

payload[2] = 'a';

payload[3] = 'r';

payload[4] = 't';

payload[5] = 'i';

payload[6] = 'n';

payload[7] = 'g';

payload[8] = '\r';

payload[9] = '\n';

payloadLen = 10;

send_packet(payload, payloadLen);

rf_block_while_tx();

}

while(tx) {

payloadLen = 0;

// payload[0] = col++;

// payload[1] = row++;

// payload[2] = '\r';

// payload[3] = '\n';

// payloadLen = 4;

// if(col > 'Z')

// col = 'A';

// if(row > '9')

// row = '0';

do {

payload[payloadLen] = write_uart(uart_debug,

wait_for_read_uart(1));

payloadLen++;

} while(payload[payloadLen-1] != '\n'

33

&& payload[payloadLen-1] != '\r'

&& payloadLen < 64);

if(payload[payloadLen-1] == '\r' && payloadLen < 63) {

payload[payloadLen] = '\n';

write_uart(uart_debug, '\n');

payloadLen++;

}

// payload[0] = 'H';

// payload[1] = 'e';

// payload[2] = 'l';

// payload[3] = 'l';

// payload[4] = 'o';

// payload[5] = '\n';

// payloadLen = 6;

send_packet(payload, payloadLen);

rf_block_while_tx();

for(i = 0; i < payloadLen; i++) {

write_uart(uart_debug, payload[i]);

}

delay_ms(250);

}

while(!tx) {

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_RX_SINGLE));

write_reg_spi(REG_FIFO_ADDR_PTR, 0x00);

unsigned char irqFlags = rf_block_until_rx();

switch(irqFlags) {

case (MASK_RX_DONE | MASK_VALID_HEADER):

payloadLen = read_reg_spi(REG_RX_NB_BYTES);

read_reg_burst(REG_FIFO, payload, payloadLen);

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_STDBY));

// write_uart(uart_debug, '\r');

// write_uart(uart_debug, '\n');

for(i = 0; i < payloadLen; i++)

write_uart(uart_debug, payload[i]);

break;

case (MASK_RX_DONE | MASK_PAYLOAD_CRC_ERROR | MASK_VALID_HEADER):

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_STDBY));

break;

case (MASK_RX_TIMEOUT):

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_STDBY));

34

break;

default:

write_reg_spi(REG_OP_MODE, (MODE_LONG_RANGE | MODE_STDBY));

}

delay_us(25);

}

return (EXIT_SUCCESS);

}

35

Data Sheets

Diodes Incorporated AP1509-50 5V Buck Converter Datasheet:
https://www.diodes.com/assets/Datasheets/AP1509.pdf

Microchip MIC3775 3.3V LDO Datasheet:
https://ww1.microchip.com/downloads/en/DeviceDoc/MIC3775-750mA-microCap-Low-Voltage-L
ow-Dropout-Regulator-DS20006045A.pdf

Silicon Labs CP2104 USB to UART bridge Datasheet:
https://www.silabs.com/documents/public/data-sheets/cp2104.pdf

Microchip PIC32MX110F016B-I/ML microcontroller Datasheet:
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/
DataSheets/PIC32MX1XX2XX283644-PIN_Datasheet_DS60001168L.pdf

36

https://www.diodes.com/assets/Datasheets/AP1509.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MIC3775-750mA-microCap-Low-Voltage-Low-Dropout-Regulator-DS20006045A.pdf
https://ww1.microchip.com/downloads/en/DeviceDoc/MIC3775-750mA-microCap-Low-Voltage-Low-Dropout-Regulator-DS20006045A.pdf
https://www.silabs.com/documents/public/data-sheets/cp2104.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/PIC32MX1XX2XX283644-PIN_Datasheet_DS60001168L.pdf
https://ww1.microchip.com/downloads/aemDocuments/documents/MCU32/ProductDocuments/DataSheets/PIC32MX1XX2XX283644-PIN_Datasheet_DS60001168L.pdf

